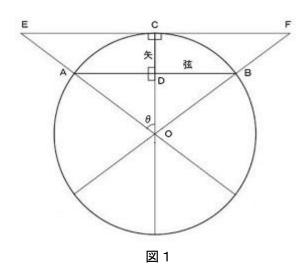
群馬の算額 111

倉賀野神社 慶応3年(1867年) 鈴木角右衛門勝森

第2問/全2問中 現代的解法 1



左の図1において、矢(し)はCD,弦はABで表され、求める弧背は、弧ACBの長さ。

円径(円の直径)を、2r, 矢(し)を、t, 弦を、2p, 弧背を、s また $\angle AOC$ を θ (ラジアン)と置く。

円周=直径×円周率 であり 360度は、 2π (ラジアン)なので 求める弧背は、

 $s = 2 r \times \pi \times \frac{2 \theta}{2 \pi}$ 約分して、 $s = 2 r \theta$ となる。

ここで、直角三角形AODで、鉤股弦の術(三平方の定理、ピタゴラスの定理)から

$$r^2 = p^2 + (r - t)^2$$

$$2 r t = p^{2} + t^{2}$$

$$\mathbf{r} = \frac{\frac{2}{p+t}}{2t}$$
 となる。 この式は次のように変形できる。

$$r = \frac{p^{2} + t^{2}}{2 t} = \frac{1}{2} \times \left(\frac{p^{2}}{t} + t\right) = \frac{1}{2} \left(\frac{1}{\frac{t}{p^{2}}} + t\right) = \frac{1}{2} \left(\frac{t}{\frac{t^{2}}{p^{2}}} + t\right)$$

$$=\frac{1}{2}\left\{\frac{t}{\left(\frac{t}{p}\right)^2}+t\right\}$$

ここで、

極 =
$$\frac{\xi}{dx}$$
 × 2 から、極 = $\frac{t}{2p}$ × 2 = $\frac{t}{p}$

$$\mathbf{\overline{x}} = \mathbf{\overline{w}}^2 \qquad \text{から、} \mathbf{\overline{x}} = \left(\frac{t}{p}\right)^2 \qquad \text{これを適用すると、}$$

$$r = \frac{1}{2} \left\{ \frac{t}{\left(\frac{t}{p}\right)^2} + t \right\} = \frac{1}{2} \left(\frac{5}{x} + 5 \right)$$

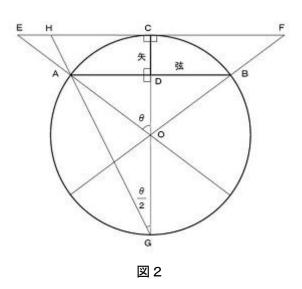
次に、 θ を矢と弦で表すことを考える。

$$\tan \theta = \frac{AD}{OD} = \frac{AD}{OC-DC} = \frac{p}{r-t}$$

は、 $\frac{p}{r-t} > 1$ のためテーラー展開できない。

左の図2で、二等辺三角形〇AGを考えると、

 $\angle AGD$ は、 $\frac{\theta}{2}$ であることがわかる。



$$\tan \frac{\theta}{2} = \frac{AD}{GD} = \frac{AD}{GC-DC} = \frac{P}{2r-t}$$

ここで
$$\mathbf{r} = \frac{\frac{2}{p+t}}{2t}$$
 を適用すると次のように変形できる。

$$\tan\frac{\theta}{2} = \frac{p}{2 - t} = \frac{p}{2 + t} = \frac{p}{2 + t^{2} - t} = \frac{p}{\frac{p^{2} + t^{2} - t^{2}}{t}} = \frac{p}{\frac{p}{t}} = \frac{1}{\frac{p}{t}} = \frac{t}{p}$$

また、極 = $\frac{t}{p}$ であるから、

$$\tan\frac{\theta}{2} = 極$$
 である。

したがって、アークタンジェント極 を求めることにより $\frac{\theta}{2}$ が得られる。

一般にアークタンジェント極は、 an^{-1} 極 または arctan 極 と書く。

ここでは、 tan^{-1} 極 と書くことにする。

 \tan^{-1} 極 は、 $-1 \le$ 極 $= \frac{p}{2 r - t} \le 1$ なので、テーラー展開することにより、次のような近似式で表すことができる。

$$\tan^{-1} \overline{w} = \left(\overline{w}\right) - \frac{1}{3} \left(\overline{w}\right)^3 + \frac{1}{5} \left(\overline{w}\right)^5 - \frac{1}{7} \left(\overline{w}\right)^7 + \frac{1}{9} \left(\overline{w}\right)^9$$
$$-\frac{1}{11} \left(\overline{w}\right)^{11} + \frac{1}{13} \left(\overline{w}\right)^{13} - \frac{1}{15} \left(\overline{w}\right)^{15} + \frac{1}{17} \left(\overline{w}\right)^{17} \cdot \cdot \cdot$$

高次までつづくのですが、以降は7次程度まで(第4項まで)で表現することにする。

このことから、弧背sは次のように表せる。

$$s = 2 r \theta$$

$$= 2 \times \frac{1}{2} \left(\frac{\xi}{x} + \xi \right) \times 2 \times \tan^{-1} \overline{w}$$

$$= 2 \times \left(\frac{\xi}{x} + \xi \right) \times \left\{ \left(\overline{w} \right) - \frac{1}{3} \left(\overline{w} \right)^{3} + \frac{1}{5} \left(\overline{w} \right)^{5} - \frac{1}{7} \left(\overline{w} \right)^{7} \cdot \cdot \cdot \right\}$$

$$= 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} - \frac{1}{3} \times 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\}$$

$$+ \frac{1}{5} \times 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} - \frac{1}{7} \times 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} \times \overline{w}$$

$$= \left\{ 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} - \frac{1}{3} \times \left\{ 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} \times \overline{w} \right\} \times \overline{w}$$

$$+ \frac{1}{5} \times 3 \times \left[\frac{1}{3} \times \left\{ 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} \times \overline{w} \right] \times \overline{w} \right\}$$

$$- \frac{1}{7} \times 5 \times \left[\frac{1}{5} \times 3 \times \left[\frac{1}{3} \times \left\{ 2 \times \left(\frac{\xi}{x} + \xi \right) \times \overline{w} \right\} \times \overline{w} \right] \times \overline{w} \right] \times \overline{w} \right] \times \overline{w} \right\} \cdot \cdot \cdot \cdot$$

$$= (原数) - (-差) + (二差) - (三差) + (四差) - (五差) \cdot \cdot \cdot$$

$$= (原数) + \{(二差) + (四差) \cdot \cdot \cdot \} - \{(-差) + (三差) + (五差) \cdot \cdot \cdot \}$$

= (原数) + (偶数番目差の和) - (奇数番目差の和)

このとき、

術文と同じになるので、術文は近似式として正しい。

矢が1寸、弦が4寸のときの弧背sは、

$$\overline{\Phi} = \frac{\cancel{\xi}}{\cancel{\xi}} \times 2 = \frac{1}{\cancel{4}} \times 2 = \frac{1}{\cancel{2}}$$

原数= 2 ×
$$\left(\frac{5}{2} + 5\right)$$
 × 極 = 2 × $\left(\frac{1}{\frac{1}{4}} + 1\right)$ × $\frac{1}{2}$ = 2 × $\left(4 + 1\right)$ × $\frac{1}{2}$ = 2 × $\left(5 + 1\right)$ × $\frac{1}{2}$ = 5

一差 =
$$\frac{1}{3}$$
 × 原数 × 率 = $\frac{1}{3}$ × 5 × $\frac{1}{4}$ ≒ 0. 4 1 6 6 6 6 6 6 6 6 6 6 7

二差 =
$$\frac{3}{5}$$
 × 一差 × 率 = $\frac{3}{5}$ × $(\frac{1}{3}$ × 5 × $\frac{1}{4}$) × $\frac{1}{4}$ = 0. 0 6 2 5

三差 =
$$\frac{5}{7}$$
 × 二差 × 率 = $\frac{5}{7}$ × 0. 0625 × $\frac{1}{4}$

= 0.0111 6071 4285 7143

四差 =
$$\frac{7}{9}$$
 × 三差 × 率 = $\frac{7}{9}$ × $\left(\frac{5}{7}$ × 0. 0 6 2 5 × $\frac{1}{4}$) × $\frac{1}{4}$

≒ 0. 0021 7013 8888 8889

以下同様に計算する。

各項	数值	累積値
原数	+5	5
一差	-0. 4166 6666 6666 6667	4. 5833 3333 3333 3333
二差	+0.0625	4. 6458 3333 3333 3333
三差	-0.0111 6071 4285 7143	4. 6346 7261 9047 6190
四差	+0.0021 7013 8888 8889	4. 6368 4275 7936 5079
五差	-0.0004 4389 2045 4545	4. 6363 9886 5891 0534
六差	+0.0000 9390 0240 3846	4. 6364 9276 6131 4380
七差	-0. 0000 2034 5052 0833	4. 6364 7242 1079 3547
八差	+0.0000 0448 7879 1360	4. 6364 7690 8958 4907

各項	数值	累積値
九差	-0. 0000 0100 3867 7014	4. 6364 7590 5090 7893
十差	+0.0000 0022 7065 3134	4. 6364 7613 2156 1027
十一差	-0. 0000 0005 1830 1259	4. 6364 7608 0325 9768
十二差	+0.0000 0001 1920 9290	4. 6364 7609 2246 9058
十三差	-0. 0000 0000 2759 4743	4. 6364 7608 9487 4315
十四差	+0.0000 0000 0642 2914	4. 6364 7609 0129 7229
十五差	-0. 0000 0000 0150 2133	4. 6364 7608 9979 5096
十六差	+0.0000 0000 0035 2774	4. 6364 7609 0014 7870
十七差	-0. 0000 0000 0008 3154	4. 6364 7609 0006 4716
十八差	+0.0000 0000 0001 9665	4. 6364 7609 0008 4381
十九差	-0. 0000 0000 0000 4664	4. 6364 7609 0007 9717
二十差	+0.0000 0000 0000 1109	4. 6364 7609 0008 0826
二十一差	-0. 0000 0000 0000 0264	4. 6364 7609 0008 0562
二十二差	+0.0000 0000 0000 0063	4. 6364 7609 0008 0625
二十三差	-0. 0000 0000 0000 0015	4. 6364 7609 0008 0610
二十四差	+0.0000 0000 0000 0004	4. 6364 7609 0008 0614
二十五差	-0. 0000 0000 0000 0001	4. 6364 7609 0008 0613
二十六差	+0. 0000 0000 0000 0000	4. 6364 7609 0008 0613

以上の数値計算により、

弧背は、4寸6分36476090008 有奇 と表せる。
 算額の「答曰」は、4寸6分3647609■■■8 有奇 であり正しい。

《あとがき》

1. 本解法例は、昭和44年(1969年)1月25日に上毛新聞に載せた説明で 『タンゼントマイナス1XのXによる展開公式』とあるのを参考にした。 群馬県和算研究会の会報第44号に復刻されている。 2. ここでは算額の「答曰」は、「4寸6分3647609■■■8 有奇」としたが、『群馬の算額解法』では、「四寸六分三六四七六零九〇〇〇八有奇」、および、「4寸6分36476090008余」としている。また、『群馬の算額』(1987年発行)も「四寸六分三六四七六零九〇〇〇八有奇」とある。

これらは、『群馬の算額 第3集』に右の図3のように載っているためと思われる。

小数第7桁目の「O」が「零」と漢字で表されているが、 小数第8桁目~第10桁目については、アラビア数字の 「O」に見えるが、慶応3年にアラビア数字は不自然である。 算木を使う時の空算かもしれないがこれもあまり自然とは 思えない。

私は、この小数第8桁目~第10桁目が読み取れず、 文字があるというマークを書いた可能性も有ると考えた。

または、「零々々」を見て、「OOO」と写してしまった可能性もある。

いずれにしても、小数第11桁目の「八」が合っているので、 答えは合っている。

すでに、実際の算額は、文字が読めなくなっているため、事実は不明である。

術文の方法では、平方根を求める計算が無く、四則演算のみで行えるため簡単であるが、当時も二十差程度まで計算を行っていることが分かった。

3.「アークタンジェント」も「テーラー展開」も、私自信が良く分かっていない。

45度は、 $\frac{\pi}{4}$ ラジアン であり、 $\tan \frac{\pi}{4} = 1$ である。

1のアークタンジェントのテーラー展開をすれば、 $\pi \angle 4$ が求められ、これから 円周率が求められる。

マーダヴァ・グレゴリー・ライプニッツ級数とよばれるが、ヨーロッパでは 1670年頃の発見だが、インドでは1400年頃にすでに発見されていて 円周率が11桁程度まで求められていたと聞きます。

以上

零九000八有奇